First report of Sclerotium rolfsii causing collar rot on Berseem (Trifolium alexandrinum) in India

Plant Dis. 2020 Oct 28. doi: 10.1094/PDIS-04-20-0709-PDN. Online ahead of print.

Abstract

Berseem (Trifolium alexandrinum) is a winter season legume fodder crop widely cultivated in the central and northern parts of India. It is considered the 'King of fodder' for its high quality green fodder, which is a rich source of protein and low in fibre. Symptoms similar to collar rot were observed in experimental sites at the ICAR-Indian Grassland and Fodder Research institute (IGFRI), Jhansi (N25º 52' 749.20″, E78º 55' 452.70″), Uttar Pradesh, India in March 2019. The incidence of disease was ranged from 18 to 22% during 2019. Symptoms included dark colored water-soaked lesions at the base of stems, stem thinning (resembles wire stem) and eventually wilting of the whole plant. A white mycelial mat was observed on the stem and collar region and light brown to tan colored sclerotial bodies formed as disease progressed. To determine the etiology of the infection, 30 diseased plants with typical symptoms were collected from the 3 different fields and used for the isolation of causal agent. Infected stem portion were cut in to small pieces (5mm), surface sterilized with 2% sodium hypochlorite (NaOCl) for 2 minutes, washed three times with sterile distilled water and air dried. The sterilized infected tissues were cultured on potato dextrose agar amended with streptomycin sulphate @ 50µg/ml and incubated at 28±1º C for 3 days. After four days, hyaline septate mycelia ranging 2-3µm in diameter grow radially over the whole plate (90 mm). Sclerotia formation started 6 days after incubation. Sclerotia were initially white and later turned brownish to tan as they matured. The number of sclerotia per plate ranged from 55 to 120 (n=5) at 12 days after inoculation. The diameter of matured sclerotial bodies ranged from 0.1mm to 1.35mm (n=25). Genomic DNA was extracted from mycelium using the CTAB method (Murray and Thompson, 1980). Three regions of rDNA viz., internal transcribed spacer (ITS), large subunit (LSU), and small subunit (SSU) were used to identify the etiology of the disease. The isolate was amplified with ITS1 (5'CGGATCTCTTGGTTCTGGGA3')/ ITS4 (5'GACGCTCGAACATGCC3') described by White et al. (1990) and sequenced. The ITS sequence (NCBI GenBank Accession No: MT026581) showed 98.21 % similar to Athelia rolfsii (MH514001.1). The isolate also amplified with primers LSU (LROR: ACCCGCTGAACTTAAGC/ LR5: TCCTGAGGGAAACTTCG) and SSU (NS1: GTAGTCATATGCTTGTCTC/ NS4: CTTCCGTCAATTCCTTTAAG). The LSU (MT225781) and SSU (MT225782) sequences showed 99.90 % and 100 % similarity to Athelia rolfsii (AY635773.1) and Athelia rolfsii (AY635773.1) respectively. Based on the morphological and molecular characteristics, the pathogen responsible for collar rot in berseem was identified as Athelia rolfsii (Anamorph: Sclerotium rolfsii) (Mordue, 1974). To confirm pathogenicity, inoculum was prepared by inoculating mycelial plugs of pathogen into autoclaved corn sand meal (5:95) and incubated at 28±1º C for 12 days. The inoculum (30g) was placed at stem portion of 15 day old seedlings (n=30) of berseem (Cv. Wardan) raised in pots filled with sterilized soil. Seedlings (n=25) inoculated with sterilized corn sand meal (30g) served as the control. The pots were placed inside of a plant growth chamber (26±2º C, 65% RH) for 15 days. Water soaked spots with white mycelium were observed on the collar region after 3 days. After 7 days, stems were completely covered by mycelia and death of seedlings was observed 14 days after inoculation. The pathogen was recovered from the artificially inoculated berseem seedlings (n=15). No symptoms were observed in control plants. Based on morphological and molecular characterization, the present isolate was confirmed as Sclerotium rolfsii. To the best of our knowledge, this is the first report of S. rolfsii causing collar rot of berseem in India.

Keywords: Athelia rolfsii ; Sclerotium rolfsii; Trifolium alexandrinum; ITS, LSU, SSU; Sclerotial bodies.