Low energy consumption electrically regenerated ion-exchange for water desalination

Water Sci Technol. 2020 Oct;82(8):1710-1719. doi: 10.2166/wst.2020.442.

Abstract

A new regeneration method of ion exchange resin named Adjacent Bed Electrically Regenerated Ion-exchange (ABERI) was proposed to eliminate the environmental impact of traditional chemical regeneration and improve the economy of replacing chemical regeneration with electrical regeneration. The desalting operation of ABERI was the same as the conventional mixed bed. When the resins were exhausted, anion and cation resins were separated and then packed in a dedicated regenerator adjacently. The resins were regenerated by the H+ and OH- ions produced from a pair of electrodes installed on both sides of the resin bed. By optimizing the regeneration time, current, and feed water flow rate, the energy consumption of ABERI was 0.38 kWh/m3 water; that is, 54% of that of another electrical regeneration technology, membrane-free electrodeionization (MFEDI). Compared with MFEDI, the quality and quantity of purified water produced after regeneration were improved. In ABERI, the average conductivity and the volume (times of bed volumes) of the purified water are 0.9 μS/cm and 109; that is, 75 and 133% of that of MFEDI, respectively. The preliminary economic analysis showed that ABERI offers the potential to regenerate ion exchange resin in an eco-friendly and cost-effective manner.

MeSH terms

  • Ion Exchange
  • Ion Exchange Resins
  • Water
  • Water Pollutants, Chemical* / analysis
  • Water Purification*

Substances

  • Ion Exchange Resins
  • Water Pollutants, Chemical
  • Water