Alternative splicing profiling provides insights into the molecular mechanisms of peanut peg development

BMC Plant Biol. 2020 Oct 23;20(1):488. doi: 10.1186/s12870-020-02702-y.

Abstract

Background: The cultivated peanut (Arachis hypogaea) is one of the most important oilseed crops worldwide, and the generation of pegs and formation of subterranean pods are essential processes in peanut reproductive development. However, little information has been reported about alternative splicing (AS) in peanut peg formation and development.

Results: Herein, we presented a comprehensive full-length (FL) transcriptome profiling of AS isoforms during peanut peg and early pod development. We identified 1448, 1102, 832, and 902 specific spliced transcripts in aerial pegs, subterranean pegs, subterranean unswollen pegs, and early swelling pods, respectively. A total of 184 spliced transcripts related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins were identified as possibly involved in peanut peg development. For aerial pegs, spliced transcripts we got were mainly involved in gravity stimulation and cell wall morphogenetic processes. The genes undergoing AS in subterranean peg were possibly involved in gravity stimulation, cell wall morphogenetic processes, and abiotic response. For subterranean unswollen pegs, spliced transcripts were predominantly related to the embryo development and root formation. The genes undergoing splice in early swelling pods were mainly related to ovule development, root hair cells enlargement, root apex division, and seed germination.

Conclusion: This study provides evidence that multiple genes are related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins undergoing AS express development-specific spliced isoforms or exhibit an obvious isoform switch during the peanut peg development. AS isoforms in subterranean pegs and pods provides valuable sources to further understand post-transcriptional regulatory mechanisms of AS in the generation of pegs and formation of subterranean pods.

Keywords: Alternative splicing; Arachis hypogaea; Full-length transcriptome; Gravitropism; Peg development.

MeSH terms

  • Alternative Splicing* / physiology
  • Arachis / genetics
  • Arachis / growth & development*
  • Arachis / metabolism
  • Exome Sequencing
  • Transcriptome / physiology