Corrosion Resistance of Waterborne Epoxy Resin Coating Cross-Linked by Modified Tetrabutyl Titanate

Scanning. 2020 Oct 3:2020:1392385. doi: 10.1155/2020/1392385. eCollection 2020.

Abstract

The development of waterborne coating is essentially important for environmental protection, and cross-linking agent is of great significance for ensuring corrosion resistance of the coating. In this work, tetrabutyl titanate was modified by ethylene glycol and tris(2-hydroxyethyl) amine and used for the solidification of waterborne acrylic-epoxy resin. Fourier-transform infrared spectroscopy (FTIR) analysis revealed that the agent reacted with OH groups first to cross-link the resin preliminarily, and then, when the amount of agent was further increased, the amino groups opened epoxide rings resulting in a secondary cross-link. Field emission scanning electron microscope (FESEM) observation and electrochemical impedance spectroscopy (EIS) test found that, when the cross-linking agent was used at 6%, the coating remains intact and kept an impedance of as high as 108 Ωcm2 even after being immersed in NaCl solution for 30 days. Copper-accelerated acetic acid-salt spray (CASS) test confirmed that the coating containing 6% cross-linking agent provided the best protection for the carbon steel substrate.