Approaches for determining cardiac bidomain conductivity values: progress and challenges

Med Biol Eng Comput. 2020 Dec;58(12):2919-2935. doi: 10.1007/s11517-020-02272-z. Epub 2020 Oct 22.

Abstract

Modelling the electrical activity of the heart is an important tool for understanding electrical function in various diseases and conduction disorders. Clearly, for model results to be useful, it is necessary to have accurate inputs for the models, in particular the commonly used bidomain model. However, there are only three sets of four experimentally determined conductivity values for cardiac ventricular tissue and these are inconsistent, were measured around 40 years ago, often produce different results in simulations and do not fully represent the three-dimensional anisotropic nature of cardiac tissue. Despite efforts in the intervening years, difficulties associated with making the measurements and also determining the conductivities from the experimental data have not yet been overcome. In this review, we summarise what is known about the conductivity values, as well as progress to date in meeting the challenges associated with both the mathematical modelling and the experimental techniques. Graphical abstract Epicardial potential distributions, arising from a subendocardial ischaemic region, modelled using conductivity data from the indicated studies.

Keywords: Bidomain model; Cardiac conductivity values; Electrophysiology; Heart; Review.

Publication types

  • Review

MeSH terms

  • Computer Simulation
  • Heart
  • Heart Conduction System
  • Humans
  • Models, Cardiovascular*
  • Myocardial Ischemia*