A 3D Biohybrid Real-Scale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing

Adv Mater Technol. 2020 Aug 23;5(10):2000540. doi: 10.1002/admt.202000540. eCollection 2020 Oct.

Abstract

The modeling of the pathological microenvironment of the central nervous system (CNS) represents a disrupting approach for drug screening for advanced therapies against tumors and neuronal disorders. The in vitro investigations of the crossing and diffusion of drugs through the blood-brain barrier (BBB) are still not completely reliable, due to technological limits in the replication of 3D microstructures that can faithfully mimic the in vivo scenario. Here, an innovative 1:1 scale 3D-printed realistic biohybrid model of the brain tumor microenvironment, with both luminal and parenchyma compartments, is presented. The dynamically controllable microfluidic device, fabricated through two-photon lithography, enables the triple co-culture of hCMEC/D3 cells, forming the internal biohybrid endothelium of the capillaries, of astrocytes, and of magnetically-driven spheroids of U87 glioblastoma cells. Tumor spheroids are obtained from culturing glioblas-toma cells inside 3D microcages loaded with superparamagnetic iron oxide nanoparticles (SPIONs). The system proves to be capable in hindering dextran diffusion through the bioinspired BBB, while allowing chemotherapy-loaded nanocarriers to cross it. The proper formation of the selective barrier and the good performance of the anti-tumor treatment demonstrate that the proposed device can be successfully exploited as a realistic in vitro model for high-throughput drug screening in CNS diseases.

Keywords: biohybrid microfluidic systems; biomimetics; blood–brain barrier; glioblastoma; two-photon lithography.