Complex Permittivity and Electromagnetic Interference Shielding Effectiveness of OPEFB Fiber-Polylactic Acid Filled with Reduced Graphene Oxide

Materials (Basel). 2020 Oct 16;13(20):4602. doi: 10.3390/ma13204602.

Abstract

This study was aimed at fabricating composites of polylactic acid (PLA) matrix-reinforced oil palm empty fruit bunch (OPEFB) fiber filled with chemically reduced graphene oxide (rGO). A total of 2-8 wt.% rGO/OPEFB/PLA composites were characterized for their complex permittivity using an open-ended coaxial probe (OEC) technique. The shielding efficiency properties were calculated using the measured transmission (S21) and the reflection (S11) coefficient results. All the measurements and calculations were performed in the 8-12 GHz frequency range. The morphological and microstructural study included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the incorporation of rGO as filler into the composites enhanced their complex permittivity properties. The composites showed a total shielding efficiency (SET) of about 31.2 dB at a frequency range of 8-12 GHz, which suggests their usefulness for microwave absorption.

Keywords: EMI shielding effectiveness; dielectric properties; fiber; polymer; reduced graphene oxide.