Linearly forced isotropic turbulence at low Reynolds numbers

Phys Rev E. 2020 Sep;102(3-1):033105. doi: 10.1103/PhysRevE.102.033105.

Abstract

We investigate the forcing strength needed to sustain a flow using linear forcing. A critical Reynolds number R_{c} is determined, based on the longest wavelength allowed by the system, the forcing strength and the viscosity. A simple model is proposed for the dissipation rate, leading to a closed expression for the kinetic energy of the flow as a function of the Reynolds number. The dissipation model and the prediction for the kinetic energy are assessed using direct numerical simulations and two-point closure integrations. An analysis of the dissipation-rate equation and the triadic structure of the nonlinear transfer allows to refine the model in order to reproduce the low-Reynolds-number asymptotic behavior, where the kinetic energy is proportional to R-R_{c}.