Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions

IEEE Trans Med Imaging. 2021 Feb;40(2):585-593. doi: 10.1109/TMI.2020.3031913. Epub 2021 Feb 2.

Abstract

Deep learning is becoming an indispensable tool for various tasks in science and engineering. A critical step in constructing a reliable deep learning model is the selection of a loss function, which measures the discrepancy between the network prediction and the ground truth. While a variety of loss functions have been proposed in the literature, a truly optimal loss function that maximally utilizes the capacity of neural networks for deep learning-based decision-making has yet to be established. Here, we devise a generalized loss function with functional parameters determined adaptively during model training to provide a versatile framework for optimal neural network-based decision-making in small target segmentation. The method is showcased by more accurate detection and segmentation of lung and liver cancer tumors as compared with the current state-of-the-art. The proposed formalism opens new opportunities for numerous practical applications such as disease diagnosis, treatment planning, and prognosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benchmarking*
  • Image Processing, Computer-Assisted*
  • Neural Networks, Computer