Radionuclide Molecular Imaging of EpCAM Expression in Triple-Negative Breast Cancer Using the Scaffold Protein DARPin Ec1

Molecules. 2020 Oct 14;25(20):4719. doi: 10.3390/molecules25204719.

Abstract

Efficient treatment of disseminated triple-negative breast cancer (TNBC) remains an unmet clinical need. The epithelial cell adhesion molecule (EpCAM) is often overexpressed on the surface of TNBC cells, which makes EpCAM a potential therapeutic target. Radionuclide molecular imaging of EpCAM expression might permit selection of patients for EpCAM-targeting therapies. In this study, we evaluated a scaffold protein, designed ankyrin repeat protein (DARPin) Ec1, for imaging of EpCAM in TNBC. DARPin Ec1 was labeled with a non-residualizing [125I]I-para-iodobenzoate (PIB) label and a residualizing [99mTc]Tc(CO)3 label. Both imaging probes retained high binding specificity and affinity to EpCAM-expressing MDA-MB-468 TNBC cells after labeling. Internalization studies showed that Ec1 was retained on the surface of MDA-MB-468 cells to a high degree up to 24 h. Biodistribution in Balb/c nu/nu mice bearing MDA-MB-468 xenografts demonstrated specific uptake of both [125I]I-PIB-Ec1 and [99mTc]Tc(CO)3-Ec1 in TNBC tumors. [125I]I-PIB-Ec1 had appreciably lower uptake in normal organs compared with [99mTc]Tc(CO)3-Ec1, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by micro-Single-Photon Emission Computed Tomography/Computed Tomography (microSPECT/CT) imaging. In conclusion, an indirectly radioiodinated Ec1 is the preferable probe for imaging of EpCAM in TNBC.

Keywords: EpCAM; PIB; SPECT; breast; cancer; iodine; molecular imaging; radionuclide.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Epithelial Cell Adhesion Molecule / analysis*
  • Epithelial Cell Adhesion Molecule / metabolism
  • Female
  • Humans
  • Iodine Radioisotopes / chemistry
  • Iodine Radioisotopes / pharmacokinetics
  • Iodobenzoates / chemistry
  • Mice, Inbred BALB C
  • Molecular Imaging / methods*
  • Molecular Probes / chemistry*
  • Molecular Probes / pharmacokinetics
  • Muscle Proteins / chemistry
  • Nuclear Proteins / chemistry
  • Radiopharmaceuticals / chemistry
  • Radiopharmaceuticals / pharmacokinetics
  • Technetium
  • Tissue Distribution
  • Tomography, Emission-Computed, Single-Photon / methods
  • Triple Negative Breast Neoplasms / metabolism*
  • Xenograft Model Antitumor Assays

Substances

  • 4-Iodobenzoic acid
  • ANKRD23 protein, human
  • EPCAM protein, human
  • Epithelial Cell Adhesion Molecule
  • Iodine Radioisotopes
  • Iodobenzoates
  • Molecular Probes
  • Muscle Proteins
  • Nuclear Proteins
  • Radiopharmaceuticals
  • Technetium-99
  • Technetium
  • 2-iodobenzoic acid
  • Iodine-125