Nile-Red-Based Fluorescence Probe for Selective Detection of Biothiols, Computational Study, and Application in Cell Imaging

Molecules. 2020 Oct 14;25(20):4718. doi: 10.3390/molecules25204718.

Abstract

A new colorimetric and fluorescence probe NRSH based on Nile-red chromophore for the detection of biothiols has been developed, exhibiting high selectivity towards biothiols over other interfering species. NRSH shows a blue shift in absorption peak upon reacting with biothiols, from 587 nm to 567 nm, which induces an obvious color change from blue to pink and exhibits a 35-fold fluorescence enhancement at 645 nm in red emission range. NRSH displays rapid (<1 min) response for H2S, which is faster than other biothiols (>5 min). The detection limits of probe NRSH towards biothiols are very low (22.05 nM for H2S, 34.04 nM for Cys, 107.28 nM for GSH and 113.65 nM for Hcy). Furthermore, NRSH is low cytotoxic and can be successfully applied as a bioimaging tool for real-time monitoring biothiols in HeLa cells. In addition, fluorescence mechanism of probe NRSH is further understood by theoretical calculations.

Keywords: Nile-red; biothiols; fluorescent probe; living cells; theoretical calculations.

MeSH terms

  • Colorimetry
  • Fluorescent Dyes / chemical synthesis
  • Fluorescent Dyes / chemistry*
  • Glutathione / analysis
  • Glutathione / chemistry
  • HeLa Cells
  • Humans
  • Hydrogen Sulfide / analysis
  • Hydrogen Sulfide / chemistry
  • Microscopy, Confocal
  • Molecular Imaging / instrumentation
  • Molecular Imaging / methods*
  • Oxazines / chemistry
  • Spectrometry, Fluorescence
  • Static Electricity
  • Sulfhydryl Compounds / analysis*

Substances

  • Fluorescent Dyes
  • Oxazines
  • Sulfhydryl Compounds
  • Glutathione
  • nile red
  • Hydrogen Sulfide