The Regulation of Floral Colour Change in Pleroma raddianum (DC.) Gardner

Molecules. 2020 Oct 13;25(20):4664. doi: 10.3390/molecules25204664.

Abstract

Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.

Keywords: Melastomataceae; anthocyanidin synthase; anthocyanin; carbohydrates; chalcone synthase; flavonol; flavonol synthase.

MeSH terms

  • Anthocyanins / genetics
  • Anthocyanins / metabolism
  • Brazil
  • Chromatography, High Pressure Liquid
  • Flavonoids / genetics
  • Flavonoids / metabolism
  • Flowers / chemistry*
  • Flowers / physiology*
  • Gene Expression Regulation, Plant
  • Mass Spectrometry
  • Melastomataceae / chemistry
  • Melastomataceae / physiology*
  • Metals / analysis
  • Pigmentation / physiology*
  • Pigments, Biological / analysis
  • Pigments, Biological / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism

Substances

  • Anthocyanins
  • Flavonoids
  • Metals
  • Pigments, Biological
  • Plant Proteins
  • malvidin
  • petunidin