Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Feature

J Mol Biol. 2020 Nov 20;432(23):6092-6107. doi: 10.1016/j.jmb.2020.09.020. Epub 2020 Oct 12.

Abstract

The polar organizing protein Z (PopZ) is necessary for the formation of three-dimensional microdomains at the cell poles in Caulobacter crescentus, where it functions as a hub protein that recruits multiple regulatory proteins from the cytoplasm. Although a large portion of the protein is predicted to be natively unstructured, in reconstituted systems PopZ can self-assemble into a macromolecular scaffold that directly binds to at least ten different proteins. Here we report the solution NMR structure of PopZΔ134-177, a truncated form of PopZ that does not self-assemble but retains the ability to interact with heterologous proteins. We show that the unbound form of PopZΔ134-177 is unstructured in solution, with the exception of a small amphipathic α-helix in residues M10-I17, which is included within a highly conserved region near the N-terminal. In applying NMR techniques to map the interactions between PopZΔ134-177 and one of its binding partners, RcdA, we find evidence that the α-helix and adjoining amino acids extending to position E23 serve as the core of the binding motif. Consistent with this, a point mutation at position I17 severely compromises binding. Our results show that a partially structured Molecular Recognition Feature (MoRF) within an intrinsically disordered domain of PopZ contributes to the assembly of polar microdomains, revealing a structural basis for complex network assembly in Alphaproteobacteria that is analogous to those formed by intrinsically disordered hub proteins in other kingdoms.

Keywords: NMR spectroscopy; PopZ; hub protein; intrinsic disorder; molecular recognition feature.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics*
  • Blood Proteins / chemistry
  • Blood Proteins / genetics*
  • Caulobacter crescentus / genetics
  • Chromosomes, Bacterial / genetics
  • Intrinsically Disordered Proteins / genetics*
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Binding / genetics
  • Protein Conformation*
  • Protein Multimerization / genetics

Substances

  • Bacterial Proteins
  • Blood Proteins
  • Intrinsically Disordered Proteins
  • plasma protein Z