Plant systemic acquired resistance compound salicylic acid as a potent inhibitor against SCF (SKP1-CUL1-F-box protein) mediated complex in Fusarium oxysporum by homology modeling and molecular dynamics simulations

J Biomol Struct Dyn. 2022 Mar;40(4):1472-1479. doi: 10.1080/07391102.2020.1828168. Epub 2020 Oct 13.

Abstract

Fusarium oxysporum causes significant economic losses in many crop plants by causing root rot, necrosis, and wilting symptoms. Homology and molecular dynamics studies are promising tools for the detection in F. oxysporum of the systemic resistance compound, salicylic acid, for control of the SKP1-CUL1-F-box protein complex. The structure of SKP1-CUL1-F-box subunit Skp1 from F. oxysporum is produced by Modeler 9v7 for the conduct of docking studies. The Skp1 structure is based on the yeast Cdc4/Skp1 (PDB ID: 3MKS A) crystal structure collected by the Protein data bank. Applying molecular dynamic model simulation methods to the final predicted structure and further evaluated by 3D and PROCHECK test programmers, the final model is verified to be accurate. Applying GOLD 3.0.1, SCF Complex Skp1 is used to prevent stress-tolerant operation. The SKP1-CUL1-F-box model is predicted to be stabilized and tested as a stable docking structure. The predicted model of the SCF structure has been stabilized and confirmed to be a reliable structure for docking studies. The results indicated that GLN8, LYS9, VAL10, TRP11, GLU48, ASN49 in SCF complex are important determinant residues in binding as they have strong hydrogen bonding with salicylic acid, which showed best docking results with SKP1-CUL1-F-box complex subunit Skp1 with docking score 25.25KJ/mol. Insilco studies have been used to determine the mode of action of salicylic acid for Fusarium control. Salicylic acid hinders the SKP1-CUL1-F-box complex, which is important in protein-like interactions through hydrogen bodings. Results from docking studies have shown that the best energy for SKP1-CUL1-F-box was salicylic acid.Communicated by Ramaswamy H. Sarma.

Keywords: Fusarium oxysporum; Homology modeling; SCF complex subunit Skp1; docking studies; molecular dynamics.

MeSH terms

  • Cullin Proteins / chemistry
  • Cullin Proteins / metabolism
  • F-Box Proteins* / chemistry
  • F-Box Proteins* / metabolism
  • Fusarium*
  • Molecular Dynamics Simulation
  • Salicylic Acid / pharmacology

Substances

  • Cullin Proteins
  • F-Box Proteins
  • Salicylic Acid

Supplementary concepts

  • Fusarium oxysporum