Cardiac autonomic recovery following traditional and augmented remote ischemic preconditioning

Eur J Appl Physiol. 2021 Jan;121(1):265-277. doi: 10.1007/s00421-020-04526-y. Epub 2020 Oct 13.

Abstract

Purpose: While the possible ergogenic benefits of remote ischemic preconditioning (RIPC) make it an attractive training modality, the mechanisms of action remain unclear. Alterations in neural tone have been demonstrated in conjunction with circulatory occlusion, yet investigation of the autonomic nervous system following RIPC treatment has received little attention. We sought to characterize alterations in autonomic balance to both RIPC and augmented RIPC (RIPCaug) performed while cycling, using acute and sustained autonomic indices.

Methods: Thirteen participants (8M:5F) recorded baseline waking heart rate variability (HRV) for 5 days prior to treatment. Participants then completed control exercise (CON), RIPC, and RIPCaug interventions in a randomized cross-over design. Cardiovascular measurements were recorded immediately before and after each intervention at rest, and during an orthostatic challenge. Waking HRV was repeated the morning after each intervention.

Results: RIPC resulted in acutely reduced resting heart rates (HR) (∆ - 4 ± 6 bpm, P = 0.02) and suppressed HR 30 s following the orthostatic challenge compared to CON (64 ± 10 vs 74 ± 9 bpm, P = 0.003). RIPCaug yielded elevated HRs compared to CON and RIPC prior to (P = 0.003) and during the orthostatic challenge (P = 0.002). RIPCaug reduced LnSDNN (Baseline 4.39 ± 0.27; CON 4.44 ± 0.39; RIPC 4.41 ± 0.34; RIPCaug 4.22 ± 0.29, P = 0.02) and LnHfa power (Baseline 7.82 ± 0.54; CON 7.73 ± 1.11; RIPC 7.89 ± 0.78; RIPCaug 7.23 ± 0.87, P = 0.04) the morning after treatment compared to all other conditions.

Conclusions: Our data suggest that RIPC may influence HR acutely, possibly through a reduction in cardiac sympathetic activity, and that RIPCaug reduces HRV through cardiac vagal withdrawal or increased cardiac sympathetic modulation, with alterations persisting until the following morning. These findings imply a dose-response relationship with potential for optimization of performance.

Keywords: Blood flow restriction; Exercise; Heart rate recovery; Heart rate variability; Orthostatic challenge; Tilt test.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Female
  • Heart / physiology
  • Heart Rate
  • Humans
  • Ischemic Preconditioning / adverse effects
  • Ischemic Preconditioning / methods*
  • Male
  • Orthostatic Intolerance / etiology
  • Sympathetic Nervous System / physiology*