Nonreciprocal Magnetic Coupling Using Nonlinear Meta-Atoms

Adv Sci (Weinh). 2020 Jul 23;7(19):2001443. doi: 10.1002/advs.202001443. eCollection 2020 Oct.

Abstract

Breaking Lorentz reciprocity is fundamental to an array of functional radiofrequency (RF) and optical devices, such as isolators and circulators. The application of external excitation, such as magnetic fields and spatial-temporal modulation, has been employed to achieve nonreciprocal responses. Alternatively, nonlinear effects may also be employed to break reciprocity in a completely passive fashion. Herein, a coupled system comprised of linear and nonlinear meta-atoms that achieves nonreciprocity based on the coupling and frequency detuning of its constituent meta-atoms is presented. An analytical model is developed based on the coupled mode theory (CMT) in order to design and optimize the nonreciprocal meta-atoms in this coupled system. Experimental demonstration of an RF isolator is performed, and the contrast between forward and backward propagation approximates 20 dB. Importantly, the use of the CMT model developed herein enables a generalizable capacity to predict the limitations of nonlinearity-based nonreciprocity, thereby facilitating the development of novel approaches to breaking Lorentz reciprocity. The CMT model and implementation scheme presented in this work may be deployed in a wide range of applications, including integrated photonic circuits, optical metamaterials, and metasurfaces, among others.

Keywords: coupled mode theory; magnetic coupling; meta‐atoms; nonlinear; nonreciprocity.