Synthesis, Characterization and Optoelectronic Property of Axial-Substituted Subphthalocyanines

ChemistryOpen. 2020 Oct 7;9(10):1001-1007. doi: 10.1002/open.202000206. eCollection 2020 Oct.

Abstract

Two novel substituted subphthalocyanines have been prepared introducing m-hydroxybenzoic acid and m-hydroxyphenylacetic acid into the axial position of bromo-subphthalocyanine. The compounds have been characterized by Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and single-crystal X-rays diffraction (XRD) methods. Their photophysical properties show that the axial substitution results into a relatively higher fluorescence quantum efficiency (ΦF=5.74 for m-hydroxybenzoic acid and 9.09 % for m-hydroxyphenylacetic acid) in comparison with that of the prototype compound, despite the almost negligible influence on the maximum absorption or the emission position. Moreover, the electrochemical behaviors show that the axial-substituted subphthalocyanines also exhibit enhanced specific capacitances of 395 F/g (m-hydroxybenzoic acid) and 362 F/g (m-hydroxyphenylacetic acid) compared with 342 F/g (the prototype) to the largest capacitance at the scan rate of 5 mV/s, and the significantly larger capacitance retentions of 83.6 % and 82.1 % versus 37.3 % upon density up to 3 A/g. These results show the potential of these axial-substituted subphthalocyanines in the use as organic photovoltaics and supercapacitors.

Keywords: axial-substitution; electrochemical properties; organic optoelectronics; photophysical properties; subphthalocyanines.

Publication types

  • Research Support, Non-U.S. Gov't