Bioinformatic Identification of Potential Hub Genes in Muscle-Invasive Bladder Urothelial Carcinoma

Cell Transplant. 2020 Jan-Dec:29:963689720965178. doi: 10.1177/0963689720965178.

Abstract

Despite aggressive treatment approaches, muscle-invasive bladder urothelial carcinoma (MIBC) patients still have a 50% chance of developing general incurable metastases. Therefore, there is an urgent need for candidate markers to enhance diagnosis and generate effective treatments for this disease. We evaluated four mRNA microarray datasets to find differences between non-MIBC (NMIBC) and MIBC tissues. Through a gene expression profile analysis via the Gene Expression Omnibus database, we identified 56 differentially expressed genes (DEGs). Enrichment analysis of gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Reactome pathways revealed the interactions between these DEGs. Next, we established a protein-protein interaction network to determine the interrelationship between the DEGs and selected 10 hub genes accordingly. Bladder urothelial carcinoma (BLCA) patients with COL1A2, COL5A1, and COL5A2 alterations showed poor disease-free survival rates, while BLCA patients with COL1A1 and LUM alterations showed poor overall survival rates. Oncomine analysis of MIBC versus NMIBC tissues showed that COL1A1, COL5A2, COL1A2, and COL3A1 were consistently among the top 20 overexpressed genes in different studies. Using the TCGAportal, we noted that the high expression of each of the four genes led to shorter BLCA patient overall survival. It was evident that BLCA patients with an elevated high combined gene expression had significantly shorter overall survival and relapse-free survival than those with low combined gene expression using PROGgeneV2. Using Gene Expression Profiling Interactive Analysis, we noted that COL1A1, COL1A2, COL3A1, and COL5A2 were positively correlated with each other in BLCA. These genes are considered as clinically relevant genes, suggesting that they may play an important role in the carcinogenesis, development, invasion, and metastasis of MIBC. However, considering we adopted a bioinformatic approach, more research is crucial to confirm our results. Nonetheless, our findings may have important prospective clinical implementations.

Keywords: COL1A1; COL1A2; COL3A1; COL5A2; gene expression profile; muscle-invasive bladder carcinoma.

MeSH terms

  • Collagen Type I / genetics
  • Collagen Type I / metabolism
  • Collagen Type I, alpha 1 Chain
  • Collagen Type III / genetics
  • Collagen Type III / metabolism
  • Computational Biology / methods*
  • Humans
  • Protein Binding
  • Transcriptome
  • Urinary Bladder / metabolism*
  • Urinary Bladder / pathology*

Substances

  • COL3A1 protein, human
  • Collagen Type I
  • Collagen Type I, alpha 1 Chain
  • Collagen Type III