Influence of stormwater infiltration systems on the structure and the activities of groundwater biofilms: Are the effects restricted to rainy periods?

Sci Total Environ. 2021 Feb 10;755(Pt 1):142451. doi: 10.1016/j.scitotenv.2020.142451. Epub 2020 Sep 22.

Abstract

Stormwater infiltration systems (SIS) have been set up to collect and infiltrate urban stormwater runoff in order to reduce flooding and to artificially recharge aquifers. Such practices produce environmental changes in shallow groundwater ecosystems like an increase in organic matter concentrations that could drive changes in structure and functions of groundwater microbial communities. Previous works suggested that SIS influence groundwater physico-chemistry during either rainy and dry period but no study has examined the impact of SIS on groundwater microorganisms during both periods. This study aimed to fill this gap by assessing SIS impacts on groundwater quality parameters in three SIS with vadose zone thickness < 3 m during two contrasting meteorological conditions (rainy/dry periods). Physicochemical (dissolved organic carbon and nutrient concentrations) and microbial variables (biomass, dehydrogenase and hydrolytic activities, and bacterial community structure) were assessed on SIS-impacted and non-SIS-impacted zones of the aquifers for the three SIS. Using clay beads incubated in the aquifer to collect microbial biofilm, we show that SIS increased microbial activities, bacterial richness and diversity in groundwater biofilms during the rainy period but not during the dry period. In contrast, the significant differences in dissolved organic carbon and nutrient concentrations, biofilm biomass and bacterial community structures (Bray-Curtis distances, relative abundances of main bacterial orders) measured between SIS-impacted and non-SIS-impacted zones of the aquifer were comparable during the two periods. These results suggest that structural indicators of biofilm like biomass were probably controlled by long-term effects of SIS on concentrations of dissolved organic matter and nutrients whereas biofilm activities and bacterial richness were temporally stimulated by stormwater runoff infiltrations during the rainy period. This decoupling between the structural and functional responses of groundwater biofilms to stormwater infiltration practices suggests that biofilms functions were highly reactive to fluxes associated with aquifer recharge events.

Keywords: Biofilm structure; Dissolved organic carbon; Infiltration basin; Microbial activity; Nutrient; Species sorting.

MeSH terms

  • Bacteria
  • Biofilms
  • Ecosystem*
  • Groundwater*
  • Rain