Fast Organic Vapor Phase Deposition of Thin Films in Light-Emitting Diodes

ACS Nano. 2020 Oct 27;14(10):14157-14163. doi: 10.1021/acsnano.0c07017. Epub 2020 Oct 5.

Abstract

Fast deposition of thin films is essential for achieving low-cost, high-throughput phosphorescent organic light-emitting diode (PHOLED) production. In this work, we demonstrate rapid and uniform growth of semiconductor thin films by organic vapor phase deposition (OVPD). A green PHOLED comprising an emission layer (EML) grown at 50 Å/s with bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy)2(acac)) doped into 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) exhibits a maximum external quantum efficiency of 20 ± 1%. The morphology, charge transport properties, and radiative efficiency under optical and electrical excitation of the PHOLED EML are investigated as functions of the deposition rate via both experimental and theoretical approaches. The EML shows no evidence for gas phase nucleation of the organic molecules at deposition rates as high as 50 Å/s. However, the roll-off in quantum efficiency at high current progressively increases with deposition rate due to enhanced triplet-polaron annihilation. The roll-off results from accumulation of stress within the PHOLED EML that generates a high density of defect states. The defects, in turn, act as recombination sites for triplets and hole polarons, leading to enhanced triplet-polaron annihilation at high current. We introduce a void nucleation model to describe the film morphology evolution that is observed using electron microscopy.

Keywords: OLED; OVPD; defects; deposition rate; gas phase nucleation; thin film stress.