Predicting greenhouse gas benefits of improved nitrogen management in North American maize

J Environ Qual. 2020 Jul;49(4):882-895. doi: 10.1002/jeq2.20087. Epub 2020 Jun 10.

Abstract

Farmers, food supply companies, and policymakers need practical yet scientifically robust methods to quantify how improved nitrogen (N) fertilizer management can reduce nitrous oxide (N2 O) emissions. To meet this need, we developed an empirical model based on published field data for predicting N2 O emission from rainfed maize (Zea mays L.) fields managed with inorganic N fertilizer in the United States and Canada. Nitrous oxide emissions ranged widely on an area basis (0.03-32.9 kg N ha-1 yr-1 ) and a yield-scaled basis (0.006-4.8 kg N Mg-1 grain yr-1 ). We evaluated multiple modeling approaches and variables using three metrics of model fit (Akaike information criteria corrected for small sample sizes [AICc], RMSE, and R2 ). Our model explains 32.8% of the total observed variation and 50% of observed site-level variation. Soil clay content was very important for predicting N2 O emission and predicting the change in N2 O emission due to a change in N balance, with the addition of a clay fixed effect explaining 37% of site-level variation. Sites with higher clay content showed greater reductions in N2 O emission for a given reduction in N balance. Therefore, high-clay sites are particularly important targets for reducing N2 O emissions. Our linear mixed model is more suitable for predicting the effect of improved N management on N2 O emission in maize fields than other published models because it (a) requires only input data readily available on working farms, (b) is derived from field observations, (c) correctly represents differences among sites using a mixed modeling approach, and (d) includes soil texture because it strongly influences N2 O emissions.

MeSH terms

  • Agriculture
  • Canada
  • Greenhouse Gases*
  • Nitrogen
  • United States
  • Zea mays*

Substances

  • Greenhouse Gases
  • Nitrogen

Grants and funding