Development of phosphorus sorption capacity-based environmental indices for tile-drained systems

J Environ Qual. 2020 Mar;49(2):378-391. doi: 10.1002/jeq2.20044. Epub 2020 Mar 9.

Abstract

The persistent environmental relevance of phosphorus (P) and P sorption capacity (PSC) on P loss to surface waters has led to proposals for its inclusion in soil fertility and environmental management programs. As fertility and environmental management decisions are made on a routine basis, the use of laborious P sorption isotherms to quantify PSC is not feasible. Alternatively, pedotransfer functions (pedoTFs) estimate PSC from routinely assessed soil chemical properties. Our objective was to examine the possibility of developing a suitable pedoTF for estimating PSC and to evaluate subsequent PSC-based indices (P saturation ratio [PSR] and soil P storage capacity [SPSC]) using data from an in-field laboratory where tile drain effluent is monitored daily. Phosphorus sorption capacity was well predicted by a pedoTF derived from soil aluminum and organic matter (R² = .60). Segmented-line relationships between PSR and soluble P were observed in both desorption assays (R² = .69) and drainflows (R² = .66) with apparent PSR thresholds in close agreement at 0.21 and 0.24, respectively. Negative SPSC values exhibited linear relationships with increasing soluble P concentrations in both desorption assays and drainflows (R² = .52 and R2 = .53 respectively), whereas positive SPSC values were associated with low SP concentrations. Therefore, PSC-based indices determined using pedoTFs could estimate the potential for subsurface soluble P losses. Also, we determined that both index thresholds coincided with the critical soil-test P level for agronomic P sufficiency (22 mg kg-1 Mehlich-3 P) suggesting that the agronomic threshold could serve as an environmental P threshold.

MeSH terms

  • Aluminum
  • Phosphorus*
  • Soil
  • Soil Pollutants / analysis*

Substances

  • Soil
  • Soil Pollutants
  • Phosphorus
  • Aluminum