Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo

Biomed Opt Express. 2020 Jun 22;11(7):3900-3912. doi: 10.1364/BOE.394186. eCollection 2020 Jul 1.

Abstract

Since the discovery of photodynamic therapy, scientists have constantly been searching for more effective and ideal photosensitizers (PSs). As part of our ongoing interest in the development of more potent photosensitizers, quinoline-8-yloxy-substituted zinc(II) phthalocyanine (ZnPc-Q1) has been identified as a promising photosensitizers in tumor cells. This study aims to explore the photodynamic mechanism and in vivo photodynamic efficacy of ZnPc-Q1, and further evaluate its potential in clinical photodynamic therapy application. The single crystal structure of ZnPc-Q1 enables the easy control of clinical quality standards. In comparison with Photofrin, ZnPc-Q1 exhibits considerably higher in vitro anticancer activity by dual dose-related mechanisms (antiproliferative and apoptosis). In addition, the in vivo results demonstrate that ZnPc-Q1 exhibits significant tumor regression with less skin photosensitivity by both direct killing and apoptosis anticancer mechanisms. In conclusion, ZnPc-Q1 can be considered to be a promising ideal PS for clinical application owing to its defined chemical structure without phthalocyanine isomerization, good absorption of tissue-penetrating red light, improved photodynamic therapy efficacy, and reduced skin phototoxicity.