The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal

Foods. 2020 Sep 30;9(10):1383. doi: 10.3390/foods9101383.

Abstract

Roasting is more and more often used as a pre-treatment of flaxseeds. However, the process can influence flaxseed proteins that may be crucial for their properties. The aim of this research was to study changes in the electrophoretic protein profile (SDS-PAGE) and the antiradical capacity of flaxseed meals after roasting. The roasting temperature (160, 180, and 200 °C) and flaxseed cultivars (golden and brown seed) were factors including in the study. The free (F-MRP) and bound-to-protein (B-MRP) Maillard reaction products were also analyzed. The most significant changes in the SDS-PAGE protein profiles of roasted seeds of each of the tested flax cultivars were observed for the 13 kDa protein fraction (decrease) and for the 19 kDa and 17 kDa fractions (increase). The research revealed a significant correlation between the roasting temperature and B-MRP content, and changes in the percentage share of those three protein fractions. The antiradical capacity of roasted flaxseeds decreased, as compared with untreated seeds. After roasting at 200 °C the antiradical capacity of flaxseeds improved slightly, probably due to the MRP formation, but it was still significantly lower than that of the raw seeds. The research provides novel information about key protein fractions that seem to be important changing during heat treatment.

Keywords: Maillard reaction product; SDS-PAGE protein profile; antioxidative capacity; defatted meal; flaxseed; roasting.