Effects of Unloaded Sprint and Heavy Sled Training on Sprint Performance in Physically Active Women

Int J Sports Physiol Perform. 2020 Oct 1;15(10):1356-1362. doi: 10.1123/ijspp.2019-0862.

Abstract

Purpose: This study aimed to compare the effects of unresisted versus heavy sled sprint training (0% vs 40% body mass [BM]) on sprint performance in women. Moreover, the effects of the aforementioned loads on resisted sprint and jump performance were analyzed.

Methods: Twenty-eight physically active women were randomly allocated into 2 groups: unloaded sprint training group (G0%, n = 14), and resisted sprint training with 40% BM group (G40%, n = 14). Pretraining and posttraining assessments included countermovement jump, unloaded 30-m sprint, and 20-m sprint with 20%, 40%, 60%, and 80% BM. Times to cover 0 to 10 (T10), 0 to 20 (T20), 0 to 30 (T30), 10 to 20 (T10-20), 20 to 30 (T20-30), and 10 to 30 m (T10-30) were recorded. Both groups were trained once a week for 8 weeks and completed the same training program, but with different loads (0% vs 40% BM).

Results: No significant time × group interactions were observed. For unloaded sprint performance, G0% showed significant (P = .027) decreases only in T10-20, while G40% attained significant decreases in T30 (P = .021), T10-30 (P = .015), and T20-30 (P = .003). Regarding resisted sprint performance, G0% showed significant (P = .010) improvements only for the 20% BM condition. The G40% group attained significant improvements in all loading conditions (20%, 40%, 60%, and 80% BM). Both groups showed significant improvements (P < .001) in countermovement jump height.

Conclusions: In physically active women, no significant differences in sprint and countermovement jump performance were detected after 8 weeks of resisted and unresisted sprint training programs. Future studies should, therefore, be devoted to how sprint training should be individualized to maximize performance.

Keywords: acceleration; athletic performance; female athletes; resisted sprint training; sled towing.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Athletic Performance*
  • Female
  • Humans
  • Resistance Training*
  • Running*