Reduction of Oxidative Stress through Activating the Nrf2 mediated HO-1 Antioxidant Efficacy Signaling Pathway by MS15, an Antimicrobial Peptide from Bacillus velezensis

Antioxidants (Basel). 2020 Sep 29;9(10):934. doi: 10.3390/antiox9100934.

Abstract

The efficient culture and purification of antimicrobial peptides (AMPs), along with intense antioxidant activity, have drawn the interest to study antioxidant activity mechanism. We report the culture conditions optimization, efficient biosynthesis, and purification of an antioxidant peptide MS15 from Bacillus velezensis obtained from fermented food that would generate heme oxygenase-1 (HO-1) expression and lead to nuclear factor erythroid 2-related factor-2 (Nrf2) nuclear translocation. We explored the ability of kinetics and potency for the bacterial killing to work against various pathogenic bacteria. A bioassay showed the lysis zone of MS15 by tricine SDS-PAGE near at 6 kDa. MALDI-TOF/MS verified molecular weight, and the existence of a molecular mass of 6091 Da was reported by purity. The MIC of MS15 ranged from 2.5-160 μg/mL for many pathogenic bacteria, showing greater potency. In macrophage RAW 264.7 cells, MS15 was exposed to assess its inhibitory effect against the generation of reactive oxygen species (ROS) in oxidative stress. In the sample treated group, the translation, and transcriptional levels of CAT (catalase), GPx (glutathione peroxidase), and SOD (superoxide dismutase) were significantly greater. In short, MS15 has significant antioxidant properties, reducing ROS production in RAW 264.7 cells, and raising the translation and transcriptional rates of antioxidant enzymes with stimulating HO-1 induction facilitated by Nrf2.

Keywords: Nrf2/HO-1 (Nuclear factor erythroid 2-related factor-2/heme oxygenase-1); ROS (reactive oxygen species); antioxidant; oxidative stress; peptide MS15.