Ultrasound and microwave-assisted recycling of spent mercuric chloride catalyst

Environ Technol. 2022 Apr;43(9):1405-1416. doi: 10.1080/09593330.2020.1831618. Epub 2020 Oct 22.

Abstract

It is urgent to develop a high-efficient process for recycling the spent mercuric chlorides catalyst (SMC) from vinyl chloride monomer (VCM) production with the implementation of the 'Minamata Convention on mercury'. A ultrasound and microwave-assisted technology were developed to treat SMC in this study. Firstly, organic carbon deposition was separated from SMC by pretreatment (ultrasonic-assisted ethanol extraction). The optimized extraction conditions were: ultrasonic time 2 h, ultrasonic power 700 W, extraction temperature 65°C, and liquid-solid ratio 7:1. Under these conditions, 90% of hazardous Cl-containing organics were separated from SMC. Then the pretreated SMC was treated by microwave heating for mercury removal. Residual mercury concentration of SMC decreased from original 1.33% to only 11.92 mg/kg at the preferred conditions of 500°C for 60 min and the treated SMC passed the Toxicity Characteristics Leaching Procedure (TCLP) test. Simultaneously, catalyst support activated carbon (AC) was regenerated with specific surface area increasing from original 263.85 to 627.5 m2/g. The organics from macropores and surface of AC was removed by pretreatment, intensifying the subsequent Hg removal and regeneration of AC as revealed by the comparative studies. Finally, SMC was subjected to water leaching for recovering metal values. 88.7% of Ba and 95.3% of Ce were leached with ultrasonic power 500 W and ultrasonic time 120 min. SMC was detoxified and valuable components Hg, AC, Ba, Ce were recovered by this new process, which may provide a new idea for industrial treatment of SMC.

Keywords: Spent mercuric chloride catalyst; activated carbon; mercury removal; microwave heating; ultrasound.

MeSH terms

  • Catalysis
  • Mercuric Chloride*
  • Metals
  • Microwaves*
  • Recycling

Substances

  • Metals
  • Mercuric Chloride