Electromagnetic control of spin ordered Mn3 qubits: a density functional study

Phys Chem Chem Phys. 2020 Dec 16;22(47):27547-27553. doi: 10.1039/d0cp04455e.

Abstract

[Mn3O(O2CMe)(dpd3/2)]2 is composed of two monomers each of which contain three Mn atoms at the vertices of an equilateral triangle. A full analysis of the electronic and magnetic structure of the dimer shows that each Mn atom carries a local spin of S = 2 while other spin states are energetically much higher. This result suggests application for conventional as well as quantum tasks. A detailed analysis of the electronic and magnetic structure of the monomer, on the other hand, suggests that there are three spin states of S = 1, S = 3/2 and S = 2 per monomer which are energetically competitive. We found that while monomer-monomer interactions are very weak, the coupling of monomers via covalent linkers affects both the magnetization and electronic energy levels of monomers. In particular, the isolated monomers prefer a ground state with local spin of S = 1 on Mn atoms and an antiferromagnetically ordered structure while the dimers possess a ground state with local spin of S = 2 on Mn atoms and a ferromagnetically ordered structure. The investigation of the polarizability of both monomer and dimer is examined for antiferromagnetically ordered structures which induces a high dipole moment of 0.08 (a.u.) and 0.16 (a.u.) for monomer and dimer, respectively. The energy of the antiferromagnetic structure is also high compared to other spin-electric molecules.