Exploiting the sequence diversity of TALE-like repeats to vary the strength of dTALE-promoter interactions

Synth Biol (Oxf). 2017 Aug 9;2(1):ysx004. doi: 10.1093/synbio/ysx004. eCollection 2017 Jan.

Abstract

Designer transcription activator-like effectors (dTALEs) are programmable transcription factors used to regulate user-defined promoters. The TALE DNA-binding domain is a tandem series of amino acid repeats that each bind one DNA base. Each repeat is 33-35 amino acids long. A residue in the center of each repeat is responsible for defining DNA base specificity and is referred to as the base specificying residue (BSR). Other repeat residues are termed non-BSRs and can contribute to TALE DNA affinity in a non-base-specific manner. Previous dTALE engineering efforts have focused on BSRs. Non-BSRs have received less attention, perhaps because there is almost no non-BSR sequence diversity in natural TALEs. However, more sequence diverse, TALE-like proteins are found in diverse bacterial clades. Here, we show that natural non-BSR sequence diversity of TALEs and TALE-likes can be used to modify DNA-binding strength in a new form of dTALE repeat array that we term variable sequence TALEs (VarSeTALEs). We generated VarSeTALE repeat modules through random assembly of repeat sequences from different origins, while holding BSR composition, and thus base preference, constant. We used two different VarSeTALE design approaches combing either whole repeats from different TALE-like sources (inter-repeat VarSeTALEs) or repeat subunits corresponding to secondary structural elements (intra-repeat VarSeTALEs). VarSeTALE proteins were assayed in bacteria, plant protoplasts and leaf tissues. In each case, VarSeTALEs activated or repressed promoters with a range of activities. Our results indicate that natural non-BSR diversity can be used to diversify the binding strengths of dTALE repeat arrays while keeping target sequences constant.

Keywords: TAL effector; plant synthetic biology; programmable transcription factor.