Direct imaging of antigen-antibody binding by atomic force microscopy

Appl Nanosci. 2021;11(1):293-300. doi: 10.1007/s13204-020-01558-w. Epub 2020 Sep 24.

Abstract

Direct observation of antigen-antibody binding at the nanoscale has always been a considerable challenging problem, and researchers have made tremendous efforts on it. In this study, the morphology of biotinylated antibody-specific Immunoglobulin E (IgE) immune complexes has been successfully imaged by atomic force microscopy (AFM) in the tapping-mode. The AFM images indicated that the individual immune complex was composed of an IgE and a biotinylated antibody. Excitingly, it is the first time that we have actually seen the IgE binding to biotinylated antibody. Alternatively, information on the length of IgE, biotinylated antibodies and biotinylated antibody-specific IgE immune complexes were also obtained, respectively. These results indicate the versatility of AFM technology in the identification of antigen-antibody binding. This work not only lays the basis for the direct imaging of the biotinylated antibody-IgE by AFM, but also offers valuable information for studying the targeted therapy and vaccine development in the future.

Keywords: Antigen–antibody binding; Atomic force microscopy; Biotinylated antibody-specific IgE immune complex; Imaging.