Quantitative phase imaging in dual-wavelength interferometry using a single wavelength illumination and deep learning

Opt Express. 2020 Sep 14;28(19):28140-28153. doi: 10.1364/OE.402808.

Abstract

In this manuscript, we propose a quantitative phase imaging method based on deep learning, using a single wavelength illumination to realize dual-wavelength phase-shifting phase recovery. By using the conditional generative adversarial network (CGAN), from one interferogram recorded at a single wavelength, we obtain interferograms at other wavelengths, the corresponding wrapped phases and then the phases at synthetic wavelengths. The feasibility of the proposed method is verified by simulation and experiments. The results demonstrate that the measurement range of single-wavelength interferometry (SWI) is improved by keeping a simple setup, avoiding the difficulty caused by using two wavelengths simultaneously. This will provide an effective solution for the problem of phase unwrapping and the measurement range limitation in phase-shifting interferometry.