Bi, Fe, and Ti ternary co-doped ZrO2 nanocomposites as a mass spectrometry matrix for the determination of bisphenol A and tetrabromobisphenol A in tea

Mikrochim Acta. 2020 Sep 26;187(10):582. doi: 10.1007/s00604-020-04544-9.

Abstract

Bi, Fe, and Ti ternary co-doped ZrO2 (BFT-ZrO2) nanocomposites have been prepared by a sol-gel process and used as both adsorbent and matrix for the enrichment and determination of small molecules by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The BFT-ZrO2 nanocomposites not only can selectively enrich a wide variety of low-mass toxic pollutants but can also be used as an excellent matrix to enhance the laser desorption/ionization efficiency with low background noise and uniform co-crystalline film. Low limits of detection (LODs) (0.1 pg mL-1 for bisphenol A (BPA), 2 pg mL-1 for tetrabromobisphenol A (TBBPA), 0.1 pg mL-1 for alizarin (AZ), 0.001 pg mL-1for bisphenol S (BPS), 0.01 pg mL-1 for indigo blue (ID), 0.01 pg mL-1 for pentachlorophenol (PCP), 100 pg mL-1 for estradiol (E2), 0.001 pg mL-1 for cetyltrimethylammonium bromide (CTAB), 0.1 pg mL-1 for crystal violet (CV), 1 pg mL-1 for malachite green (MG), 0.01 pg mL-1 for rhodamine B (RhB), and 0.01 pg mL-1 for perfluorooctane sulfonate (PFOS) were achieved. The relative standard deviations (RSDs) of shot-to-shot are 9.4-24% and of sample-to-sample 5.2-17%. The BFT-ZrO2 matrix was successfully applied to the determination of TBBPA and BPA in tea samples. This method shows a new strategy for determination of toxic compounds in tea. Graphical abstract.

Keywords: BFT-ZrO2; Bisphenol A; Mass spectrometry; Nanocomposites; Tea analysis; Tetrabromobisphenol A; Toxic contaminants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzhydryl Compounds / chemistry*
  • Nanocomposites / chemistry*
  • Phenols / chemistry*
  • Tandem Mass Spectrometry / methods*
  • Tea / chemistry*
  • Titanium / chemistry*

Substances

  • Benzhydryl Compounds
  • Phenols
  • Tea
  • Titanium
  • bisphenol A