Application of gas chromatography-high resolution quadrupole time-of-flight mass spectrometry in fingerprinting analysis of polycyclic aromatic sulfur heterocycles

J Chromatogr A. 2020 Sep 21:1630:461577. doi: 10.1016/j.chroma.2020.461577. Online ahead of print.

Abstract

Polycyclic aromatic sulfur heterocycles (PASHs), as a group of major sulfur-containing compounds, widely occur in crude oil and its refined products. Accurate analyses of these petrochemical components play an important role in monitoring oil quality, forensic source identification, and assessment of environmental impact of an oil spill. PASHs occur at relatively lower abundances in most crude oils and refined petroleum products than their corresponding aromatic hydrocarbons and are co-eluted together with some petroleum hydrocarbons in chromatographic analysis, resulting in high uncertainty for their quantitation. Capillary gas chromatography coupled with a quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) provides high resolution and high mass accuracy, which facilitates discrimination of the delicate mass defects of isobaric compounds with the same nominal mass and external matrix material. In this work, GC-QTOF-MS was applied to analyze bicyclic to pentacyclic PASHs including benzothiophenes, dibenzothiophenes, benzonaphthothiophenes, dinaphthothiophenes and their C1- to C4- alkylated homologues in a number of crude oils, refined petroleum products, and environmental samples. GC-QTOF-MS analysis substantially improved the identification confidence and reduced quantitation uncertainty of PASHs and polycyclic aromatic hydrocarbons (PAHs) by eliminating the interferences presented in nominal mass chromatograms.

Keywords: GC-QTOF-MS; Oil fingerprinting; PAHs; Petroleum; Polycyclic aromatic sulfur heterocycles.