LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia

Neuron. 2020 Dec 9;108(5):919-936.e11. doi: 10.1016/j.neuron.2020.08.030. Epub 2020 Sep 24.

Abstract

Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.

Keywords: Excitatory synapse; astrocyte plasticity; barrel cortex; glutamate sensor imaging; glutamate spillover; hippocampus; long-term potentiation; perisynaptic astroglial processes; super-resolution microscopy; whisker stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Astrocytes / ultrastructure
  • Female
  • Glutamic Acid / metabolism*
  • Imaging, Three-Dimensional / methods
  • Long-Term Potentiation / physiology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Organ Culture Techniques
  • Rats
  • Rats, Sprague-Dawley
  • Rats, Wistar
  • Synapses / metabolism*
  • Synapses / ultrastructure

Substances

  • Glutamic Acid