Unveiling Odd-Frequency Pairing around a Magnetic Impurity in a Superconductor

Phys Rev Lett. 2020 Sep 11;125(11):117003. doi: 10.1103/PhysRevLett.125.117003.

Abstract

We study the unconventional superconducting correlations caused by a single isolated magnetic impurity in a conventional s-wave superconductor. Because of the local breaking of time-reversal symmetry, the impurity induces unconventional superconductivity, which is even in both space and spin variables but odd under time inversion. We derive an exact proportionality relation between the even-frequency component of the local electron density of states and the imaginary part of the odd-frequency local pairing function. By applying this relation to scanning tunneling microscopy spectra taken on top of magnetic impurities immersed in a Pb/Si(111) monolayer, we show experimental evidence of the occurrence of the odd-frequency pairing in these systems and explicitly extract its superconducting function from the data.