Exosome as a Natural Gene Delivery Vector for Cancer Treatment

Curr Cancer Drug Targets. 2020;20(11):821-830. doi: 10.2174/1568009620666200924154149.

Abstract

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier.

Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article.

Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes.

Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects.

Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.

Keywords: Exosome; biocompatible; cancer; gene therapy; immunologically inert; nanocarrier.

Publication types

  • Review

MeSH terms

  • Exosomes / physiology*
  • Gene Transfer Techniques*
  • Genetic Therapy* / methods
  • Genetic Therapy* / trends
  • Genetic Vectors
  • Humans
  • Neoplasms* / diagnosis
  • Neoplasms* / drug therapy