Radical-Initiated Formation of Aromatic Organosulfates and Sulfonates in the Aqueous Phase

Environ Sci Technol. 2020 Oct 6;54(19):11857-11864. doi: 10.1021/acs.est.0c05644. Epub 2020 Sep 24.

Abstract

Aromatic organosulfates and sulfonates have recently been observed in ambient aerosols collected in urban sites. Anthropogenic volatile organic compounds including aromatics are considered as their precursors in the atmosphere, but the mechanism for the formation of these compounds is still not adequately understood. In the present study, we investigated the aqueous phase reactions of benzoic acid with sulfite in the presence of Fe3+ under various conditions. Aromatic organosulfates and sulfonates [hereafter called aromatic organosulfur compounds (AOSCs)] can be formed during the reaction. The yield was measured as 7.3 ± 0.6%, suggesting that the formation of AOSCs may provide an additional pathway for the fate of benzoic acid in the atmosphere. The mechanism for AOSC formation is proposed to be through the combination of organic radical intermediates with sulfoxy radicals, that is, SO3- and SO4- radicals. In addition to benzoic acid, other monocyclic aromatics (i.e., benzene, toluene, salicylic acid, benzyl alcohol, and phenol) can also undergo analogous mechanisms to produce various AOSCs. Interestingly, AOSC formation through this pathway can retain the aromatic ring of parent aromatics, shedding light on the fact that monocyclic aromatics can also serve as the hitherto unrecognized precursors of AOSCs in the atmosphere. Our findings provide new insights into potential sources and pathways for AOSC formation in the atmosphere.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aerosols
  • Atmosphere*
  • Benzene
  • Toluene*
  • Water

Substances

  • Aerosols
  • Water
  • Toluene
  • Benzene