Short Bouts of Gait Data and Body-Worn Inertial Sensors Can Provide Reliable Measures of Spatiotemporal Gait Parameters from Bilateral Gait Data for Persons with Multiple Sclerosis

Biosensors (Basel). 2020 Sep 20;10(9):128. doi: 10.3390/bios10090128.

Abstract

Wearable devices equipped with inertial sensors enable objective gait assessment for persons with multiple sclerosis (MS), with potential use in ambulatory care or home and community-based assessments. However, gait data collected in non-controlled settings are often fragmented and may not provide enough information for reliable measures. This paper evaluates a novel approach to (1) determine the effects of the length of the walking task on the reliability of calculated measures and (2) identify digital biomarkers for gait assessments from fragmented data. Thirty-seven participants (37) diagnosed with relapsing-remitting MS (EDSS range 0 to 4.5) executed two trials, walking 20 m each, with inertial sensors attached to their right and left shanks. Gait events were identified from the medio-lateral angular velocity, and short bouts of gait data were extracted from each trial, with lengths varying from 3 to 9 gait cycles. Intraclass correlation coefficients (ICCs) evaluate the degree of agreement between the two trials of each participant, according to the number of gait cycles included in the analysis. Results show that short bouts of gait data, including at least six gait cycles of bilateral data, can provide reliable gait measurements for persons with MS, opening new perspectives for gait assessment using fragmented data (e.g., wearable devices, community assessments). Stride time variability and asymmetry, as well as stride velocity variability and asymmetry, should be further explored as digital biomarkers to support the monitoring of symptoms of persons with neurological diseases.

Keywords: body-worn sensors; gait analysis; gait symmetry; gait variability; inertial sensors; multiple sclerosis; reliability; short bouts of gait; walking; wearable.

MeSH terms

  • Accelerometry
  • Biomechanical Phenomena
  • Female
  • Gait
  • Humans
  • Male
  • Monitoring, Physiologic*
  • Multiple Sclerosis / physiopathology*
  • Reproducibility of Results