Optimization Methodology for Additive Manufacturing of Customized Parts by Fused Deposition Modeling (FDM). Application to a Shoe Heel

Polymers (Basel). 2020 Sep 17;12(9):2119. doi: 10.3390/polym12092119.

Abstract

Additive manufacturing technologies offer important new manufacturing possibilities, but its potential is so big that only with the support of other technologies can it really be exploited. In that sense, parametric design and design optimization tools appear as two appropriate complements for additive manufacturing. Synergies existing between these three technologies allow for integrated approaches to the design of customized and optimized products. While additive manufacturing makes it possible to materialize overly complex geometries, parametric design allows designs to be adapted to custom characteristics and optimization helps to choose the best solution according to the objectives. This work represents an application development of a previous work published in Polymers which exposed the general structure, operation and opportunities of a methodology that integrates these three technologies by using visual programming with Grasshopper. In this work, the different stages of the methodology and the way in which each one modifies the final design are exposed in detail, applying it to a case study: the design of a shoe heel for FDM-an interesting example both from the perspectives of ergonomic and mass customization. Programming, operation and results are exposed in detail showing the complexity, usefulness and potential of the methodology, with the aim of helping other researchers to develop proposals in this line.

Keywords: FDM; additive manufacturing; biomechanics; infill optimization; mass customizing; optimization; parametric design.