Patterns of Haemoproteus majoris (Haemosporida, Haemoproteidae) megalomeront development

Acta Trop. 2020 Dec:212:105706. doi: 10.1016/j.actatropica.2020.105706. Epub 2020 Sep 18.

Abstract

Blood parasites of the genus Haemoproteus (Haemosporida, Haemoproteidae) are cosmopolitan and prevalent in birds. Numerous species and lineages of these pathogens have been identified. Some of the infections are lethal in avian hosts mainly due to damage of organs by tissue stages, which remain insufficiently investigated. Several closely related lineages of Haemoproteus majoris, a common parasite of passeriform birds, have been identified. One recent study described megalomeronts of unique morphology in the lineages hPHYBOR04 and hPARUS1 of H. majoris and suggested that the similar tissues stages might also be features in other phylogenetically closely related lineages of the same parasite species. This study aimed to test if (i) megalomeronts are present during the development of the lineage hPHSIB1 of H. majoris and if (ii) they are similar to the other investigated lineages of this species in regard of their morphology and location in organs. One adult wood warbler Phylloscopus sibilatrix, an Afrotropical migrant, naturally infected with H. majoris lineage hPHSIB1 was wild-caught after seasonal spring migration and screened using microscopic examination of blood films and histological sections of organs as well as using PCR-based testing. Bayesian phylogenetic analysis placed the lineages hPHSIB1, hPHYBOR04 and hPARUS1 in one, well-supported clade. Parasitaemia was high (6.5%) in the examined wood warbler, numerous megalomeronts were found in kidneys, and a few in the intestine. Megalomeronts of the lineage hPHSIB1 were morphologically hardly distinguishable from those of lineages hPHYBOR04 and hPARUS1; only negligible differences in the maturation stage of the cytomeres were seen. The kidneys were the main location site of the megalomeronts in all three lineages of this parasite species. This study shows that closely related lineages of H. majoris produce megalomeronts of similar morphology and predominant location in kidneys, while the normal function of this organ may be affected by the presence of numerous large megalomeronts. Megalomeronts of different avian Haemoproteus species are markedly variable in morphology and location, but phylogenetically closely related lineages possess cryptic megalomeronts. This finding suggests that phylogenies based on partial cytb gene could provide information for prediction of patterns of exo-erythrocytic development of closely related Haemoproteus parasites and are worthy of attention in planning haemosporidian parasite tissue stage research.

Keywords: Birds; Exo-erythrocytic development; Haemoproteus majoris; Haemosporidian parasites; Kidneys; Megalomeronts.

MeSH terms

  • Animals
  • Bayes Theorem
  • Bird Diseases / parasitology*
  • Haemosporida / classification
  • Haemosporida / genetics
  • Haemosporida / growth & development*
  • Passeriformes / parasitology*
  • Phylogeny
  • Protozoan Infections, Animal / parasitology*