Stabilization of Pentaphospholes as η5 -Coordinating Ligands

Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23879-23884. doi: 10.1002/anie.202011571. Epub 2020 Oct 22.

Abstract

Electrophilic functionalisation of [Cp*Fe(η5 -P5 )] (1) yields the first transition-metal complexes of pentaphospholes (cyclo-P5 R). Silylation of 1 with [(Et3 Si)2 (μ-H)][B(C6 F5 )4 ] leads to the ionic species [Cp*Fe(η5 -P5 SiEt3 )][B(C6 F5 )4 ] (2), whose subsequent reaction with H2 O yields the parent compound [Cp*Fe(η5 -P5 H)][B(C6 F5 )4 ] (3). The synthesis of a carbon-substituted derivative [Cp*Fe(η5 -P5 Me)][X] ([X]- =[FB(C6 F5 )3 ]- (4 a), [B(C6 F5 )4 ]- (4 b)) is achieved by methylation of 1 employing [Me3 O][BF4 ] and B(C6 F5 )3 or a combination of MeOTf and [Li(OEt2 )2 ][B(C6 F5 )4 ]. The structural characterisation of these compounds reveals a slight envelope structure for the cyclo-P5 R ligand. Detailed NMR-spectroscopic studies suggest a highly dynamic behaviour and thus a distinct lability for 2 and 3 in solution. DFT calculations shed light on the electronic structure and bonding situation of this unprecedented class of compounds.

Keywords: electrophilic functionalisation; iron; pentaphosphole; polyphosphorus ligands; protonation.