Accelerated Aging Stability of β-Ga2O3-Titanium/Gold Ohmic Interfaces

ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46277-46287. doi: 10.1021/acsami.0c10598. Epub 2020 Oct 1.

Abstract

Stable ohmic contacts are critical to enable efficient operation of high-voltage electronic devices using ultrawide bandgap semiconductors. Here we perform, for the first time, thermally accelerated aging of Ti/Au ohmic interfaces to (010) β-Ga2O3. We find that a heavily doped semiconductor, doped n-type by Si-ion implantation, treated with reactive ion etch (RIE), results in a low specific contact resistance of ∼10-5 Ω cm2 that is stable upon accelerated thermal aging at 300 °C for 108 h. The low resistance interface is due to thermionic field emission of electrons over an inhomogeneous barrier. Scanning/transmission electron microscopy indicates that the multi-layered structure and elemental distribution across the contact interface, formed during a 1 min 470 °C post-metallization anneal, do not change noticeably over the aging period. A ∼1 nm interfacial layer is observed by high-resolution microscopy at the Ti-TiOx/Ga2O3 interface on all samples exposed to RIE, which may contribute to their excellent stability. In addition, longer-range facet-like interfacial features are observed, which may contribute to the inhomogeneous barrier. In contrast, Ti/Au junctions to moderately doped (010) Ga2O3 made with no RIE treatment exhibit a high contact resistance that increases upon accelerated aging, along with a partially lattice-matched interface. The methods used here to understand the process, structure, and electrical property relationships for Ti/Au contact interfaces to β-Ga2O3 can be applied to assess and tune the stability of a variety of other oxide-semiconductor interfaces.

Keywords: Si-ion implant; Ti/Au ohmic contacts; aging stability; charge transport; dopant activation; microscopy characterization; β-Ga2O3.