Co-expression network analysis uncovers key candidate genes related to the regulation of volatile esters accumulation in Woodland strawberry

Planta. 2020 Sep 19;252(4):55. doi: 10.1007/s00425-020-03462-7.

Abstract

FveERF (FvH4_5g04470.1), FveAP2 (FvH4_1g16370.1) and FveWRKY (FvH4_6g42870.1) might be involved in fruit maturation of strawberry. Overexpression of FveERF could activate the expression of AAT gene and ester accumulation. Volatile esters play an important role in the aroma of strawberry fruits, whose flavor is the result of a complex mixture of various esters. The accumulation of these volatiles is closely tied to changes in metabolism during fruit ripening. Acyltransferase (AAT) is recognized as having a significant effect in ester formation. However, there is little knowledge about the regulation network of AAT. Here, we collected the data of RNA-seq and headspace GC-MS at five time points during fruit maturation of Hawaii4 and Ruegen strawberry varieties. A total of 106 volatile compounds were identified in the fruit of woodland strawberries, including 58 esters, which occupied 41.09% (Hawaii4) or 33.40% (Ruegen) of total volatile concentration. Transcriptome analysis revealed eight transcription factors highly associated with AAT genes. Through the changes in esters and the weight co-expression network analysis (WGCNA), a detailed gene network was established. This demonstrated that ERF gene (FvH4_5g04470.1), AP2 gene (FvH4_1g16370.1) and one WRKY gene (FvH4_6g42870.1) might be involved in expression of AAT genes, especially ERF genes. Overexpression of FveERF (FvH4_5g04470.1) does activate expression of AAT genes and ester accumulation in fruits of strawberry. Our findings provide valuable clues to gain better insight into the ester formation process of numerous fruits.

Keywords: ERF gene; Fruit; Hawaii4; Ruegen; Transcription; WGCNA.

MeSH terms

  • Esters* / metabolism
  • Fragaria* / genetics
  • Fruit / genetics
  • Fruit / metabolism
  • Gene Expression Regulation, Plant*
  • Taste

Substances

  • Esters