Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties

J Hazard Mater. 2020 Nov 15:399:123005. doi: 10.1016/j.jhazmat.2020.123005. Epub 2020 May 26.

Abstract

There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.

Keywords: Environmental pollution; Lipidomics; Metabolomics; Multi-omics; RNA-seq; Transcriptomics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Ecosystem*
  • Longevity
  • Polystyrenes* / toxicity
  • Surface Properties

Substances

  • Polystyrenes