Boron-based ternary Rb6Be2B6 cluster featuring unique sandwich geometry and a naked hexagonal boron ring

Phys Chem Chem Phys. 2020 Sep 16;22(35):20043-20049. doi: 10.1039/d0cp03123b.

Abstract

Computational evidence is reported on a boron-based ternary Rb6Be2B6 cluster as the "Big Mac" sandwich on a subnanoscale with thickness of 0.58 nm. The core hexagonal B6 ring, occurring in the naked form due to double 6π/6σ aromaticity, is capped by two tetrahedral BeRb3 ligands. Such a B6 motif is scarce in boron clusters. The sandwich cluster has four-fold 2σ/6π/6σ/2σ aromaticity and its tetrahedral BeRb3 ligand is the simplest case of three-dimensional aromaticity (or spherical aromaticity). The sandwich can be formulated as a charge-transfer complex, [Rb3Be]3+[B6]6-[BeRb3]3+, whose components are held together by robust electrostatics, facilitating dual-mode dynamic fluxionality.