Structural heterogeneities in starch hydrogels

Carbohydr Polym. 2020 Dec 1:249:116834. doi: 10.1016/j.carbpol.2020.116834. Epub 2020 Aug 1.

Abstract

Hydrogels have a complex, heterogeneous structure and organisation, making them promising candidates for advanced structural and cosmetics applications. Starch is an attractive material for producing hydrogels due to its low cost and biocompatibility, but the structural dynamics of polymer chains within starch hydrogels are not well understood, limiting their development and utilisation. We employed a range of NMR methodologies (CPSP/MAS, HR-MAS, HPDEC and WPT-CP) to probe the molecular mobility and water dynamics within starch hydrogels featuring a wide range of physical properties. The insights from these methods were related to bulk rheological, thermal (DSC) and crystalline (PXRD) properties. We have reported for the first time the presence of highly dynamic starch chains, behaving as solvated moieties existing in the liquid component of hydrogel systems. We have correlated the chains' degree of structural mobility with macroscopic properties of the bulk systems, providing new insights into the structure-function relationships governing hydrogel assemblies.

Keywords: CP/MAS NMR; CPSP/MAS NMR; Internal dynamics; NMR spectroscopy; Network organisation; Starch hydrogels.