Spin-dependent dual-wavelength multiplexing metalens

Opt Lett. 2020 Sep 15;45(18):5258-5261. doi: 10.1364/OL.401782.

Abstract

The Pancharatnam-Berry (PB) phase is generally utilized to realize a single wavelength spin-dependent function or dual-wavelength functions but operating only in one spin state. A dual-wavelength multifunctional metasurface relying on both spins has been rarely designed due to the rather complicated degrees of freedom to be considered. In this Letter, both dynamic and PB phases are adopted, instead of a pure PB phase, to propose a multiplexing metasurface that can independently and simultaneously manipulate left- and right-handed circularly polarized incidences at dual wavelengths. It is demonstrated experimentally as well as numerically that such spin-dependent dual-wavelength metalenses can make circularly polarized incidences of different wavelengths split into and focus at multi-dimensional positions. Our work demonstrates a new avenue in designing spin-dependent dual-wavelength multifunctional optical devices.