A novel genotyping technique for discriminating LVAS-associated high-frequency variants in SLC26A4 gene

AMB Express. 2020 Sep 15;10(1):166. doi: 10.1186/s13568-020-01102-7.

Abstract

An increasing number of biological and epidemiological evidence suggests that c.919-2A > G and c.2168A > G variants of solute carrier family 26, member 4 (SLC26A4) gene play a critical role in the development of large vestibular aqueduct syndrome (LVAS). In this study, we developed a rapid genotyping method for discriminating LVAS-associated high-frequency variants in SLC26A4 gene. The genotyping technique consists of 3' terminal exonuclease-resistant phosphorothioate-modified allele specific primer extension mediated by exo+ polymerase. In PCR amplification by Pfu polymerase, allelic specific primers perfectly matching wild type allele were extended while no specific products were yielded from primers targeting variant allele. Similarly, allelic specific primers perfectly matching variant allele were extended and no specific products were observed from primers targeting wild type allele. The clinical application of 3' terminal phosphorothioate-modified allele specific primer extension mediated by Pfu polymerase identified both homozygous for SLC26A4 gene c.919-2A > G variant in two patients clinically diagnosed as LVAS by temporal bone CT scan. The genetic results from this method are consistent with that of DNA sequencing. The data suggest that exo+ polymerase-mediated 3' terminal phosphorothioate-modified primer extension is reliable in the identification of SLC26A4 gene high-frequency variant prior to high-resolution CT scan. The method is extremely suitable for quickly molecular etiologic screening and early diagnosis and aggressive prevention therapy of LVAS.

Keywords: Exo+ polymerase; Large vestibular aqueduct syndrome; Phosphorothioate modification; Solute carrier family 26 member 4.