Study on the osmoregulation of "Halomonas socia" NY-011 and the degradation of organic pollutants in the saline environment

Extremophiles. 2020 Nov;24(6):843-861. doi: 10.1007/s00792-020-01199-5. Epub 2020 Sep 15.

Abstract

"Halomonas socia" NY-011, a new species of moderately halophilic bacteria isolated and identified in our laboratory, can grow in high concentrations of salt ranging from 0.5 to 25%. In this study, the whole genome of NY-011 was sequenced and a detailed analysis of the genomic features was provided. Especially, a series of genes related to salt tolerance and involved in xenobiotics biodegradation were annotated by COG, GO and KEGG analyses. Subsequently, RNA-Seq-based transcriptome analysis was applied to explore the osmotic regulation of NY-011 subjected to high salt stress for different times (0 h, 1 h, 3 h, 6 h, 11 h, 15 h). And we found that the genes related to osmoregulation including excluding Na+ and accumulating K+ as well as the synthesis of compatible solutes (alanine, glutamate, ectoine, hydroxyectoine and glycine betaine) were up-regulated, while the genes involved in the degradation of organic compounds were basically down-regulated during the whole process. Specifically, the expression trend of genes related to osmoregulation increased firstly then dropped, which was almost opposite to that of degrading organic pollutants genes. With the prolongation of osmotic up-shock, NY-011 survived and gradually adapted to osmotic stress, the above-mentioned two classes of genes slowly returned to normal expression level. Then, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were also utilized to observe morphological properties of NY-011 under hypersaline stress, and our findings showed that the cell length of NY-011 became longer under osmotic stress, at the same time, polyhydroxyalkanoates (PHAs) were synthesized in the cells. Besides, physiological experiments confirmed that NY-011 could degrade organic compounds in a high salt environment. These data not only provide valuable insights into the mechanism of osmotic regulation of NY-011; but also make it possible for NY-011 to be exploited for biotechnological applications such as degrading organic pollutants in a hypersaline environment.

Keywords: Bioremediation; Genome; Halophile; Osmoregulation; Transcriptome.

MeSH terms

  • Environmental Pollutants / metabolism*
  • Halomonas / metabolism*
  • Osmoregulation*
  • Osmotic Pressure
  • RNA-Seq
  • Salt Tolerance / genetics*
  • Transcriptome

Substances

  • Environmental Pollutants