Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in Drosophila

J Neurosci. 2020 Oct 14;40(42):8025-8041. doi: 10.1523/JNEUROSCI.0349-20.2020. Epub 2020 Sep 14.

Abstract

Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.

Keywords: Drosophila neuromuscular junction; firing rates; homeostatic plasticity; motor patterns; quantal content; synaptic scaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila / physiology*
  • Evoked Potentials / physiology
  • Glutamic Acid / physiology*
  • Homeostasis
  • Immunohistochemistry
  • Locomotion / physiology
  • Motor Neurons / physiology
  • Muscles / innervation
  • Muscles / physiology
  • Neuromuscular Junction / physiology
  • Neurotransmitter Agents / metabolism*
  • Patch-Clamp Techniques
  • Synapses / physiology
  • Synaptic Potentials / physiology
  • Vesicular Glutamate Transport Proteins / metabolism

Substances

  • Neurotransmitter Agents
  • Vesicular Glutamate Transport Proteins
  • Glutamic Acid